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Introduction 
 
Obtaining of information about parameters of 

acoustic ways propagation is the main task of acoustic 
testing. The application of ultrasonic guided waves for 
the analysis of large industrial objects makes it possible 
to increase quality and speed of testing significantly. 
Currently theory of waves propagation is being 
extensively developed due to use of computers and 
software which gives the possibility to obtain and 
analyse large quantities of information about 
oscillations parameters. All the above mentioned allows 
for further development of methods aimed at testing of 
industrial objects of finite cross section size by means of 
ultrasonic guided waves.    

 

The theory of acoustic guided waves propagation 
was summarized by [1]. The author singled out the main 
ways of theory development and introduced the most 
complete mathematical models describing the 
connection between the main characteristics of wave 
propagation in elastic medium with its mechanical 
parameters and considered the simplest forms of media 
interfaces. More complete mathematical description of 
ultrasonic waves interaction with waveguide-ambient 
medium interface and algorithm of calculation of modes 
converting have been presented in [2]. Propagation of 
ultrasonic guided waves in waveguides with 
heterogeneous properties in the direction of wave 
propagation has been viewed in [3]. This paper 
elaborates on a theory of waveguides for acoustic 
waves. The developed theory of waves propagation as a 
rule is concluded with complicated transcendental 
equations or differential second order equations 
systems. To get solution of equations describing 
acoustic guided waves propagation it's necessary to 
develop cumbersome numerical algorithms, the task of 
which is to get wavefield parameters, using limited 
resources of personal computers. One of interesting 
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Abstract 

 
The most topical task is further development of testing methods of oil and gas industry objects by ultrasonic guided waves. 

The aim of research is to develop mathematical model of ultrasonic guided waves propagation  in oil and gas pipelines made 
from steel. 

The method of research is a computer modelling of ultrasonic guided waves propagation in waveguides with cross-sections 
of finite size. 

Calculations of guided waves propagation have been performed in two spectral ranges. With the increase of frequency an 
algorithm finds the same number of modes in a more narrow frequency spectra. Numerical results of found modes were 
estimated by effective mass criterion. The criterion shows that only a few modes from the found set correspond with applied 
boundary conditions of ultrasonic guided waves propagation. 

Results of calculations are applied to ultrasonic guided waves propagation along the V weld. Welded joints sizes meet 
requirements of normative documents about oil and gas main pipelines. 

In the paper it is specified that the parameters of ultrasonic guided waves propagation in a waveguide with its cross-cuts of 
finite sizes can be calculated utilizing existent algorithms realising search of eigenvalues,  based on  Timoshenko beam which is a 
finite element typeIt has been found out that not all results of eigenvalues calculation by the algorithm with boundary conditions 
that describes propagation of guided waves with specified wavenumber correspond to propagation of the modes. The results of 
calculations have to be filtered out by the criterion of effective mass. It has been shown that the criterion of effective mass of a 
mode can be used to determine the type of guided wave. It has been found out that modes, propagating in a waveguide with its 
cross-cuts of finite sizes, can have marked torsional displacements without additional axial movements. 
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approaches towards design of algorithm for guided 
waves propagation parameters calculation is a 
combination of an analytical solution and finite 
elements method [4]. In this paper the authors have used 
general algorithms of calculations on the basis of 
parallelepipedal finite element. The solution to acoustic 
oscillations propagation problem was complicated due 
to method of boundary conditions assigning and 
treatment of obtained deformations and tension. A 
simpler algorithm for calculation of acoustic waves 
propagation was suggested in [5]. Acoustic oscillations 
have been described on the basis of beam theory and 
have made calculations by means of correspondent 
finite elements.  

For the effective use of ultrasonic guided waves in 
NDT it's necessary to be able to forecast oscillations 
parameters depending on both mechanical parameters as 
well as geometrical forms of cross section of the object 
under investigation. Currently available investigations 
can sufficiently describe process of oscillations 
propagation in wavefield, depending on medium 
mechanical parameters, but such mathematical models 
are developed for simple geometrical forms of 
wavefield (plate, cylinder etc.). Real objects have more 
complicated geometrical forms, without consideration 
of which it's impossible to determine parameters of 
ultrasonic guided waves propagation. The aim of 
investigation is to develop mathematical model of 
ultrasonic guided waves propagation in wavefield with 
an arbitrary form of cross section and algorithm of its 
calculation.  

The main mathematical terms, describing 
ultrasonic guided waves propagation  

Ultrasonic waves are described on the basis of 
basic principles of linear elasticity of preservation of 
linear angular moments and fundamental equations, 
describing a relationship between applied force and 
deformations, based on Newton laws [1]. Mentioned 
principles are a basis for the law of mechanical energy 
conservation within the limits of linear elasticity theory. 
Thus, if force F is applied to one surface of an elastic 
body, described by unit vector normal line nj, then on 
the opposite surface force F(t) will appear (on condition 
that body isn't moving), which will be equal to: 

( ) ,nσ=F jij
t                         (1) 

where  σij is the stress tensor; i, j = 1, 2, 3 is the indices, 
marking Cartesian axes. 

The law of angular moments conservation for an 
elastic isotropic body makes stress tensor symmetrical: 

.jiij σ=σ                             (2) 

The law of angular moments conservation can be 
expressed by means of displacement of elementary 
volume of elastic medium ui: 
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where ρ is the density; t is the time. 
Displacement of elementary volume of elastic 

medium correlates with deformations εij of an elastic 
body in the following way: 
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where xi is the Cartesian axes. 
For elastic medium, described by linear theory of 

elasticity, stresses and deformations are correlated as 
follows:    

,µε+δλε=σ ijijkkij 2                       (5) 

where λ, µ is the Lame elasticity constants;  
δij is the Kronecker symbol; k = 1, 2, 3. 

On the basis of (1)-(5) motion equation of elastic 
oscillations propagation can be written down: 
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To calculate elastic oscillations propagation, (5) is 
better to be presented in a vector form: 

( ) ( ) ,
t

u
ρ=ρF+uµ+uµ+λ

2

2
2

∂
∂∇⋅∇∇        (7) 

where u ≡ {u1, u2, u3} is the elementary volume 
displacement vector; F ≡ {  F1, F2, F3} is the force 
vector;  

ix∂
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Component u2∇  can be represented as follows: 

( )2 .u = u u∇ ∇ ∇ ⋅ − ∇ ×∇ ×                  (8) 

Considering (8) equation of elastic oscillations 
propagation will be: 
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In (9) component u⋅∇  describes longitudinal 
oscillations and u×∇×∇  – transverse oscillations. 
With the help of (1)-(9) any elastic oscillations can be 
described, but to use equations, describing elastic 
oscillation propagation it is necessary to use initial and 
boundary conditions of differential equations. In general 
immediate use of equations (7) and (9) for engineering 
objects is not an easy task. It is even more complicated 
to describe propagation of guided ultrasonic waves by 
these equations squarely. From the analysis of (9) 
physical parameters can be singled out which determine 
form and direction of elastic oscillations propagation 
(guided waves included): 

elastic constants value; 
density; 
form and value of force applied to elastic body 

surface; 
form of wavefield along which oscillation is 

propagating. 
Helmholtz suggested one of widely used 

approaches to simplifying of elastic oscillations 
propagation description [1]. In accordance with his 
theory, elastic oscillation wavefield can be divided into 
scalar φ and vector ψ potentials: 
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.0=ψ,ψ+φ=u ⋅∇×∇∇                 (10) 
Elastic oscillations propagation with consideration 

of (9) and (10) and without applied force will be 
described as follows: 
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where cl, ct is the correspondingly longitudinal and 
transverse oscillations. 

Such oscillations forms are solution to (11): 
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From (12) propagation speeds of longitudinal and 
transverse waves can be determined: 
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Equation  (11) describes propagation of elastic 
oscillations on that part of medium where there is no 
applied force. But it is supposed that applied force 
beyond the boundaries of elastic body surface under 
investigation can be described with the help of harmonic 
law. Frequency of applied force on the elastic body 
surface is equal to waves oscillation frequency. Such 
simplifying assumptions pertain to description of guided 
waves propagation because they propagate to significant 
distances from the source of excitation. 

From (11)–(13) it can be said that aim of equations 
solution, describing elastic oscillations propagation is 
determination of scalar and vector potentials values. If 
there are potentials values, it is possible to find form of 
displacement of elementary volume u of an elastic body 
on the whole domain of waves propagation.  

The principle of dividing of waves upon 
oscillations type let us explain guided waves 
propagation (Fig. 1): longitudinal and transverse 
oscillations propagating under certain angle towards 
plate surface create a harmonic oscillation, propagating 
along its surface in compliance with harmonic law.  

 
The solid lines indicate incident bulk waves, while the 

dashed lines indicate reflected bulk waves 

Figure 1 – Scheme of guided modes propagation 
based on partial waves concept 

 
Guided waves occur when there is coincidence of 

phases of incident and reflected waves from media 
interface, e.g. elastic body-air (Fig. 2) and creation of 
standing wave through the thickness of an elastic body 
(wavefield). Thus, waves within the boundaries of 
wavefield falling and reflecting from media interface, 
constructively interference and reconstruct themselves 

forming wavefield of a stable form. General form for 
guided wave description will be as follows:  

( ) ( ) ,xtu=tx,u sd −                    (14) 

where d  is the single vector, describing oscillations 
polarization; s is the slowness. 

 
The solid lines indicate incident bulk waves, while the 

dashed lines indicate reflected bulk waves 

Figure 2 – A slowness diagram for guided waves 
 
Polarization of lateral oscillations (Fig. 1) is called 

vertical polarization and waves are called vertically 
polarized, but in waveguide horizontally polarized 
waves Ψz can propagate, which are described as follows 
[1]: 
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In waveguide of finite cross section size three 
types of waves will exist as it follows from (12) and 
(15): 

longitudinal wave with polarization of oscillations 
of elementary volume of elastic medium in the direction 
of wave propagation; 

torsional with polarization of oscillations along 
waveguide perimeter; 

flexural with polarization vertical to axial plane.  
Currently theory of guided waves is well-

developed for the description of their propagation in 
round beams. For waveguides of such type setting of 
boundary conditions by means of applying of 
cylindrical coordinates system becomes significantly 
easier. That allowed to obtain analytical equations as a 
result of direct solution of differential equations, 
describing propagation of partial waves (bulk waves 
within the limits of a cylinder). But obtained analytical 
expressions aren't classical form of equations solution 
and need development of algorithms of radical 
numerical search. Analytical solutions become more 
complicated if we take into account forced oscillations, 
thus if we specify more complicated boundary 
conditions the other direction of description of guided 
ways propagation is the use of materials strength theory 
within the limits of which longitudinal, torsional and 
flexural motions in cylindrical beams, bars and plates 
can be mathematically described. Such motions are 
described by one equation in partial quartic derivatives. 
Such a simplified theory actually describes one degree 
of oscillations freedom and approximates lower part of 
spectrum in a certain range of a real wavefiled in a 
waveguide [1]. The advantage of this theory is relatively 
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simple obtaining of a solution. Combination of these 
two approaches is a theory, suggested by S.P. 
Timoshenko. According to this theory wave propagation 
in a beam is described on the basis of materials strength 
theory but taking into account the whole spectrum of 
frequencies.  

Model for guided waves propagation calculation in 
a waveguide   

To use beams theory by S.P. Timoshenko for 
waveguides with an arbitrary form of cross section, it's 
necessary to use finite elements theory. For elastic 
oscillations propagation tasks theory of semi-analytical 
method is the best one [4]. According to this theory, 
analytical solutions are used in direction of elastic wave 
propagation and finite element approximation of 
deformations and stresses are used in cross section of 
waveguide. This method significantly simplifies elastic 
body points in Cartesian coordinates, making 
calculations more effective. Finite element nodes in  
x1–x2 can be projected in coordinates ξ1–ξ2 in domain  
–1 ≤ ξ1, ξ2 ≥ 1, so [7]: 
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is the set of finite elements nodes coordinates; L is the 
number of finite elements in the plane or number of 
integration points in one finite element; 

( ) [ ]TL22 N,,N,N=ξ,ξN ...11  is the transformation 
matrix. 

For three finite elements equally-spaced from each 
other, elements of transformation matrix are calculated 
as follows: 
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In case of wave propagating, oscillations are 
supposed to be harmonic in the direction x3. According 
to analytical part of a method, displacement is a 
function of nodes displacement in direction x3 and time 
t. Displacements in plane ξ1–ξ2 is determined by square 
law approximation equation. Full displacement of 
elementary volume of elastic environment ψ is as 
follows: 
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Equation (18) is a connection between coordinates 
from domain ξ1, ξ2 and real physical processes of elastic 
environment change.  

Elementary volume displacement (18) will 
describe elastic body deformations through partial 
displacement derivatives in the following way: 
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Vital distinction of (19) from deformation 
determining (4) is its dependence on time. Deformation 
is presented as a vector, which makes matrix 
multiplication easier. Transition to partial derivatives in 
coordinates of domain ξ1, ξ2 is realized with the help of 
Jacobi matrix J of tensor analysis theory, which in this 
case will be:  
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On the basis of  (18)–(20) one can build motion 
equation of elastic medium elementary volume (9), in 
terms of finite elements algorithm this volume will be 
equal to one finite element or integration point. To study 
elastic oscillations propagation across the whole object 
it's necessary to combine stiffness matrix, mass matrix 
and force matrix of all elements in accordance with their 
reciprocal placement [4]: 
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where  [ ]L1,1,2 B,,B,B= ...1,11B  is the coordinates of 

finite elements nodes; [ ]L2,2,2 B,,B,B= ...2,12B  is the 

differentials of finite elements nodes;  С is the stiffness 
matrix of material with dimensions of 6×6; | |J  is the 
determinant of Jacobi matrix; symbol H is the 
transposed matrix in which each element is conjugated 
with initial matrix. In case when matrix elements are 
real but not complex numbers, symbol H will designate 
only transposed matrix; 
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where  1/ ξN=Ξ ii ∂∂ , 2/ ξN=Ω ii ∂∂ . 
In (21) integrals should be calculated by Gauss–

Legendre algorithm [7]. The advantage is (21) that with 
the help of this algorithm one can calculate wave 
propagation at any form of excitation by outer force F. 
In NDT harmonic excitation is most widely used, which 
in its turn means that bulk ultrasonic waves 
(longitudinal and transverse), created in elastic medium 
will be also oscillating in accordance with harmonic 
law. According to (14) equation, describing guided 
ultrasonic wave propagation, will be as follows:     

( ) ( ) ,
ωt

eU=t,ξu
ξki −⋅ 3

3                 (22) 
where  k is the wave number; ω is the angle frequency; 
U is the oscillation amplitude. 

Oscillation amplitude U for guided wave can be 
calculated this way [8]: 

( ) ,AΡυ=t,ξU mmmm 3                  (23) 
where  m is the mode number; υm is the coefficient of 
mode normalizing along waveguide length; Pm is the 
harmonic propagation coefficient; Am is the amplitude 
vector.  

Harmonic propagation coefficient Pm is as such 
[8]: 
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where  Le is the waveguide length. 
For differential equation of second order (21) and 

solution form (23) if we take a part of waveguide 
without exciting force, solution can be found by 
characteristic values task solution [4]: 
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Equation (26) is dispersed as to wave number and 
angular frequency. As a result of solution (26) form of 
oscillations can be found. To solve (26) existing 
algorithms of eigenvalues search can be used, embedded 
in finite elements calculation software packages. 

 
Calculations and results  

 
Calculating by finite elements method can be 

carried out according to such algorithm: 
1. Waveguide length is set.  
2. Cross section form is built.  
3. Type of elastic medium is set.  
4. Mathematical model describing stress-

deformation is selected.  
5. Algorithm of mathematical model calculation is 

selected.  
6. Initial and boundary conditions necessary to 

solve elasticity theory equations are set.  
7. Finite element dimensions are set.  
8. Judging by computer resources and set tasks the 

most optimal configuration of accuracy and 
computational speed is selected.  

9. Calculation results are treated.  
Waveguide length is chosen considering minimum 

calculation expenses. As a rule, waveguide length is 
chosen to be equal to ultrasonic guided wave length, 
excited by frequency ω. Specified value is the smallest 
one in the set of frequencies, obtained as a result of 
solution of characteristic values task. This argument is 
derived from algorithm realization method.  

Form of waveguide cross section was chosen in 
accordance with normative documents concerning 
recommended form of V-weld connection for gas main 
pipelines (Fig. 3) [9]. In future that will let us get a 
necessary instrument for the analysis of wavefield of 
ultrasonic guided wave, propagating in welded 
connections.   

 

Figure 3 – Waveguide cross-section 
 
Type of elastic medium is chosen out of welded 

connection material analysis (Table 1) [10]. 
 
Table 1 – Waveguide mechanical properties 

Steel grade  Ст4 
Young modulus, hPa 189 
Poisson ratio 0.29 
Yield point, MPa (σ02) 580 
Material type  isotropic 
Density, kg/m3 7850 

 
S.P. Timoshenko suggested mathematical model, 

describing elastic medium agitation while guided wave 
propagation. On the basis of this model, beam is a finite 
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element type. For such types of finite elements 
algorithm of eigenvalues search can be used.  

We choose zero initial conditions. To set boundary 
conditions it must be mentioned that wave is 
propagating along rod axis, which is being described as 
a finite element. In this case we build constrained 
equations on nodes that are on both ends of the 
waveguide that makes transitions and rotations equal. In 
this case on two ends of a waveguide, condition of 
equality of finite element nodes transition is set. To 
increase accuracy of calculations, waveguide length 
should be divided into 10 elements. Small number of 
elements let us conduct calculations with double 
accuracy.  

Mode excitation can be evaluated by its effective 
mass meff [11]. Effective mass calculation depends on 
normalization method and can be calculated by the 
following system of equations: 

( ) ,ψM=m iii
21ˆ MTeff −                   (26) 
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where і is the number of mode; .M̂  is the generalized 
mass, equal to selected method of point normalization; 

0
jξ   is the coordinates of rotation centre; ê is the single 

vector which points to form of mode motion, in which 
only one component is equal to 1 and the other five are 
equal to 0. 

Effective mass approximation to waveguide mass 
means that mode can be excited in real waveguide, thus, 
this mode corresponds with the condition of ultrasonic 
guided wave propagation. From (27) it's clear that 
modes can be evaluated in accordance with oscillations 
form (displacement and spinning).  

Calculations, carried out in two frequency ranges 
(Table 2, Table 3) show that with the increase of 
frequency algorithm finds equal number of modes in a 
more narrow frequency range.  

Numerical results of found modes have been 
evaluated according to (27), (Fig. 4, Fig. 5). Obtained 
dependencies for effective mass show that only a couple 
of modes from found set correspond with the specified 
boundary conditions.   

In megahertz frequency range it's seen that there 
are modes, which have definite twisting form of elastic 
medium elementary volume displacements. At lower 
frequencies twisting and axial displacements practically 
belong to one group of modes.    

 
Conclusions  
 
This paper has specified that parameters of 

ultrasonic guided waves propagation in a waveguide 
with cross section of finite dimensions can be calculated  

Table 2 – Results of calculations of ultrasonic guided 
wave propagation in semi-megahertz frequency range 

Frequency, kHz Characteristic value, ×1011 
527 109 
574 131 
577 131 
614 147 
635 159 
694 190 
695 191 
745 219 
805 256 
807 257 
817 263 
824 268 
828 271 
834 275 
836 276 

Table 3 – Results of calculations of ultrasonic guided 
wave propagation in megahertz frequency range 

Frequency, kHz Characteristic value, ×1011 
1022 412 
1037 425 
1038 426 
1053 437 
1153 525 
1155 526 
1160 531 
1214 582 
1226 594 
1232 599 
1233 600 
1238 601 
1263 630 
1272 639 
1275 642 

 
with the help of existing algorithms, which apply 
method of finite elements for the search of characteristic 
values like Timoshenko beam. It has been found out that 
as a result of characteristic values calculation with 
boundary conditions which correspond with set 
boundary conditions for specified wave number we also 
get characteristic values which are not responsible for 
modes propagation. The results of calculations must be 
filtrated on the basis of mode effective mass value 
criterion. 

It has been investigated that mode effective mass 
value criterion can be used to determine type of guided 
wave mode. Modes have been found which propagate in 
waveguide with finite dimensions of its cross section 
and definite torsional displacements of elementary 
volume without additional axial displacements. Wave 
energy in such guided waves is mostly concentrated in 
torsional modes and doesn't go over to modes which can 
be propagating in plates (symmetrical and 
antisymmetrical modes). 
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Figure 4 – Effective mass of waveguide modes  

in semi-megahertz frequency range 
 

 

 
Figure 5 – Effective mass of waveguide modes  

in megahertz frequency range 
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УДК 662.767 

Моделювання поширення спрямованих ультразвукових хвиль  
e хвилеводі зі скінченним розміром його поперечного перерізу 

А.А. Мандра 1,  І.З. Лютак 2*,  З.П. Лютак 2 
1 УМГ "Черкаситрансгаз";  

вул.Сумгаїтська, 3, м. Черкаси, 18023, Україна 
2 Івано-Франківський національний технічний університет нафти і газу;  

вул. Карпатська, 15, м. Івано-Франківськ, 76019, Україна 

Актуальним завданням є подальший розвиток методів контролю об'єктів нафтогазової промисловості 
ультразвуковими спрямованими хвилями. Метою дослідження є розроблення математичної моделі поширення 
ультразвукових спрямованих хвиль у нафтогазопроводах, що виготовлені зі сталі. 

Методом дослідження є комп'ютерне моделювання процесу поширення ультразвукової спрямованої хвилі у 
хвилеводі зі скінченними розмірами його поперечного перерізу. 

Проведено обчислення поширення спрямованих хвиль у двох частотних діапазонах. Зі збільшенням частоти 
алгоритм знаходить однакову кількість мод у більш вузькому частотному діапазоні. Числові результати знайдених мод 
були оцінені за критерієм ефективної маси моди. За цим критерієм видно, що тільки кілька мод зі знайденого набору 
відповідають накладеним граничним умовам поширення ультразвукової спрямованої хвилі. 

Результати приведено для поширення ультразвукових спрямованих хвиль у V-подібному зварному шві, 
геометричні розміри якого відповідають нормам з'єднань магістральних нафтогазопроводів. 

Встановлено, що параметри поширення ультразвукових спрямованих хвиль у хвилеводі зі скінченними розмірами 
його поперечного перерізу можна обчислювати за допомогою існуючих алгоритмів, що реалізують метод скінченних 
елементів для пошуку власних значень на основі елемента типу стрижня Тимошенко. Виявлено, що в результаті 
обчислення алгоритмом власних значень із заданими граничними умовами, які відповідають поширенню спрямованих 
хвиль для заданого хвильового числа, ми одержуємо також власні значення, які не відповідають за поширення мод. 
Результати обчислень необхідно фільтрувати за критерієм величини ефективної маси моди. Досліджено, що критерій 
ефективної маси моди можна використовувати для визначення типу спрямованої хвилі. Знайдено моди, що 
поширюються у хвилеводі зі скінченними розмірами його поперечного перерізу з вираженими крутним зміщенням 
елементарного об'єму без додаткових осьових зміщень. 

 
Ключові слова: крутна мода, метод скінченних елементів, ультразвук, ультразвукова спрямована хвиля. 


