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Abstract

The pipelines, the working conditions of which aignificantly different from the contions of the majority of the existil
systems are considered in this article. In thiglartthe gas pipelines with large difference ievetion that operate at hi
(5-15 MPa) and ultrahigh pressures (up to3%MPa) are taken into the account. First of adlepl and gas pipelines t
overcome the high mountain passes are considehedthiEory and algorithm for calculating the steside opertiéons of sucl
pipelines are presented.
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Up to now, various methods for calculating gas  the continuity equation:
pipelines of high pressure are known and tested][1-

However, many of those methods contain simplifying a(va):O,
assumptions, which in most cases, is justified, and  from which we receive the following equation:
presents quite significant results. Moreover, ioerg Q=pvS=idem (1)

years, gas pipelines, working conditions, which\aney N
different from many existing pipelines. In this easve that implies constant mass fioWQ along the
deal with gas pipelines with large difference ievaltion ~ pipeline. Since the density of the gas decreases as the
fans that operate at high (5-15 MPa) and ultrahighressure drop, then from the equation (1) we can
pressures (up to 25-35 MPa) in a wide temperatusenclude that in the case of constant cross-seitanea
range and complexity of the heat transfer. Thesp-de S=idem the gas velocity of the gas from the start to
water gas pipelines are of the following pipeliypels:  the end increases:;
“Blue Stream”, “South Stream”, “The North European equation of motion:
Gas Pipeline” etc., as well as gas pipelines that do dp 4 dz
overcome high mountain passes. In extreme condition vd—=————rw—pg—, (2

. o : X dx d dx
under which these pipelines are being operated, the 5 )
factors, which in ordinary cases are small or igle  Whereasz, = (4/8) pv* is the shear stress on the inner
can not be neglected. In this paper, the theory affiiction surface of the conduitg is the diameter of
algorithm of termo-hydraulic calculating of steadpde pipeline; g is the gravity accelerationz(x) is the
pipelines, and in particular, the use of numerical,

methods are methodologically and consistentl§iPeline profile; dz/ dx=sina(x) is the sine of the

presented. angle to the horizontal axis of the conduit.
the total energy balance equation:
1. Basic Equations for Steady Pipeline Gas Flow d (a 02 J dz
Q| = —+J|=ndg,-Qg—,  (3)
To calculate the steady flow of compressible gas dx| 2 dx

pipeline in the area, the following equations aseda whereasq, is the heat of the flow per unit of surface of

the conduit. If the dependence of the enthalpyhef t
pressure and the temperature T is used in thistiegua

* Corresponding author: putting J = J(p,T), and also if to assume that the gas
lurie254@gubkin.ru heat exchange with the environment follows Newton’s
mikhail.lurie@mail.ru heat transferq, = K. (T —T,,), Where K, is the heat

© 2013, Ivano-Frankivsk National Technical transfer coefficient and T,,, Iis the ambient
University of Oil and Gas. temperature, we will receive the following exation:
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Table 1 - Values of the ratidC,, -Gy J/R

Pressure, Temperaturd, K
P, MPa 270 280 290 300 310 320 330 34(
1.00 1.14 1.13 1.11 1.10 1.09 1.09 1.08 1.07
3.00 1.48 1.42 1.38 1.34 1.3@ 1.2y 1.26 1.22
5.00 1.94 1.81 1.70 1.61 1.55 1.49 1.44 1.40
9.00 3.22 2.80 2.50 2.28 2.1 1.9y 1.86 1.97
12.00 4.04 3.50 3.08 2.78 2.53 2.34 2.7 2.05
16.00 4.28 3.89 3.54 3.21 2.9 2.70 2.53 2.36
20.00 3.99 3.79 3.57 3.33 3.11 2.91 2.72 2.57
24.00 3.64 3.56 3.41 3.26 3.1d 2.9 2.79 2.66
30.00 3.22 3.19 3.13 3.05 2.96 2.8b 2.76 2.66
Table 2 — The Values of the coefficienDD(p,T) the Joule—Thomson, K/MPa
Pressure, Temperaturd, K
p, MPa 270 280 290 300 310 320 330 344
1.00 5.39 5.13 4.60 4.53 4.01 4.05 3.60 3.32
3.00 5.36 4.98 4.64 4.32 4.04 3.75 3.62 3.29
5.00 5.18 4.82 4.47 4.15 3.91 3.64 3.42 3.23
9.00 4.39 4.13 3.89 3.66 3.43 3.28 3.06 2.97
12.00 3.45 3.37 3.25 3.11 2.97 2.8P 2.97 2.55
16.00 2.25 2.33 2.36 2.34 2.24 2.2P 2.16 2.07
20.00 1.40 1.53 1.61 1.66 1.69 1.68 1.66 1.63
24.00 0.86 0.98 1.08 1.14 1.2( 1.2p 1.23 1.23
30.00 0.39 0.48 0.56 0.62 0.64 0.72 0.75 0.77
akv P dT (03} dp_ Expressing the derivatives in _this expression,
[—Tj E(+ 6_p Tdx through pressure and temperature vv_|th the_ helghef t
T equation of statep = Z(p,T) pRT, we will obtain:
=705 (r-1,,,)- 0%
Q amb [Z +T[azj ]
: — - - oT
Denoting (03/0T), =Cp;  (83/dp); =-CpDy c,(pT)=Cy +R | ©)
and accepting the Coriolis coefficiemf which equals 1, 7 - p(azj
we represent the equation (3) in the following way: op
@+C [dT D @jz where C,, is the heat capacity of gas at the constant
dx dx 7 dx 4 volume. For the perfect gaszZ=1, there-fore
rdK “) Cp-CG/=R. For a real difference in gas

dz
== T T_Tam -0—.
Q ( b) 9

In this case, the heat CapaC|ty at constant press
(p T) a Joule-Thomson coefficient:
the equation of state of a real gas:

Cp—-Cy >R. Ratio valuesZ(p,T) are calculated by

uformula (6) using the functlorz(p T) for the natural
gas; they are presented in Table 1.

The Joule-Thomson coefficientDD(p,T) is
p=2(p.T) pRT, 5)

_ I _ represented by the formula, where heag(p,T) is
where Z is the compressibility factorR is the gas . ) ) )
constant. given by the equeation (6) [3]. Using the equatin

With the help of the equation of the state of d reaP =Z(p.T) pRTas the state of gas, we obtain the
gas, the main thermodynamic coefficients can bellowing expression:

expressed in terms of the functioni(p,T). In D ( T) 1 T (o0z )
particular, the expression for that connection efth P (p T) pZ aT
capacity at the constant pressure and volume feak
gas acquires the following look [5]: For the perfect ga& =1, thus Dy = 0
T (dp) (dp The values of the coefficientDD(p,T) are
Cp—Cy =__(6_Tj (a_Tj ' calculated by the formula (7) usin@(p,T) of natural
P

gas and are presented in Table 2.
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It should be noted that the Joule~Thomson effect ~Whereas the coefficier(p,T) of compressibility
canchange its direction of actioto reversed when the s considered to be a known function of its argursien

derivative (9Z/9T), changes the sign from positive o |f the main determinantA of the system of

negative. Based upon the known chaﬂép,T) of €quations (9) is different from zero, i.e,

natural gas, we deal with the pressure of 35-4&.MP 4 : alb_z_a2b1¢ 0, it can be unlguely solved for the
Equations (1)—(7) are the basis for calculation dierivatives dp/dx and dT/dx using the well-known
the steady non-isothermal gas in the pipeline waith Cramer’s rule:

arbitrary profile. dp _ 4
2. Method of Calculating the Established Gas Sfl(_ j (10)
Pipelines Modes — =22
dx 4

If in the equation (2) of the gas movement tavhere 4 =cjb, —cob and 4, =ajc, —axc;. Here, the
express the shear stresg on the inner surface of the right sides of equations (8) are unknown functiofis
pipe according to the formularW:(/l/S)pvz, the P.T and x, and the mass flow of ga® is included
system of equations for the calculation of the dyea INtC them as a constant parameter.

state regimes of gas pipelines can be represested a The system of equations (10) can be integrated into
5 any of the standard methods, for example, by a
pD@ +ﬂ3:_il&_p d_z numerical method of Runge—Kutta method or by a
dx dx d 2 dx simpler Euler lines method . Both of these methads
d (2 zd Ky dz included in practically almost any mathematical
dx E+J :‘—(T T mb)_g&v ®) application package of computer programs.
The greatest practical interest are the solutidns o
p= Z(D,T)pRT- the following two tasks.
Task 1.Find the distribution of pressurp(x) and

Since the mass flow rate iQ =idem, the the temperatureT(x) along the participating pipeline if the
velocity » is not an independent variable and isnitial section of a predetermined pressupg = p(O)
determined by v =Q/(pS). If from the second and temperaturd, =T(0), and the mass flow of the

equation (8) to subtract the first one, we receieed gasq is unknown. Find also the gas pressige at the
2-system of ordinary differential equations end of pipeline part

d dT i i
al(p,T)—p+bl(p,T)— =c(p,T.X), o Task 2_.F|nd the mass flgw _of the g_a@ if the
dx dx (9) initial and final part of the pipeline section hatre
d dT = =
az(p,T)d—p+b2(p,T)d— =cy(p,T) pressure set apy = p(0) and p, = p(L), and the set
X X temperature of the gas & =T(0) at the beginning of
for 2 unknowns — pressurp(x) and temperatur&(x). e plot. Find the gas temperatufe at the gas-end of
Here, the pipeline.
_ 1 RT GV The first task solution, which is in accordancetwit
al(p, )_ (Q/S)2 — 5 |4°P a_p ' the mathematical terminologgf the initial Cauchy
P T problemis constructed by numerical methods, which are
01 R oz mentioned above. The second task is not the primary
bl(p’T)za_T > = o z +T[6_Tj , because its conditions are set on the edges dilbienf
P P integration ofxD[O,L], i.e. and in sectionsx=0 and
1 y) s)? dz x =L such tasks are calldsbundary
CAPES 5 AL +tpg— |,
(Q/sf| dx . | _
3. lterative  Algorithm  of  Numerical
Calculations
az(p,T):(a_‘] _l:_ﬂlz +T[6_Zj ]’
ow)r » P T p The solution of the second task (the boundary one)
dJ can be reduced to the solution of the first (ihiGauchy
b,(p.T)= 6_Tj =C,(p.T)= problem) if to waive the conditiorp(L)= p_ in time,
p2 however, instead of that, it is significant to coles, in
=C, +R| Z+ T(GZJ 7 {GZJ ’ thls case,'knowrQ as a mass flow rf';lte. Then, in the
aT ), op ), initial section x=0 of the conduit portion, the pressure
_ zdKq 1 (Q/S)Z po and temperaturd, of the gas will be known, and
Cz(D,T)—‘T(T ‘Tamb)*'ET- the mass flowQ will not be as an unknown quantity

anymore. Consequently, it is possible to use théhode
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of integration that was used to soltiee task 1 Of The diameter of the pipeline B2-33' (inner diameter
course, within such an approach the pressp@e) at is 735-758 mm, and the wall thickness=igl0 mm),
the end of pipeline section, generally speakind,vit  the design capacity of the 4-trunk pipeline is édoa
be equal to the predetermined valyg , so it is 63 billion T per year.

necessary to vary the flow ra@ to achieve the desired © A
equality.

The essence of the iterative algorithm, calle

zeroing algorithmeconsists in the following. First, the =
interval of (0,Q) values is designated, which can havi

massive gas consumptio< Q < Q.- As the first

-500 +

-1000

-1500 +

Depth of the

approximation, flow rate Q(l):QmaX/Z is selected

with the corresponding calculations conductethek 1 1 N—" /\//v\/_/

p(0)= po, T(0)=T5.Q= Q(l) : The calculation 2500 ﬁ
determines the meaning qﬁﬂ)(L) of the pressure at the Horisontal distance, km

end of the pipelinex=L. There are two options l9ure1—Profile of the Underwater Section of the

Pipeline “South Stream” from the compressor

p055|.bl_e: 0 ) station “Coast” to “Varna” compressor station
if it turns out thatp (L)< p_, it means that the
mass flow of gaQl¥) in the first approximation was set  Fig. 2 shows the distribution of gas pressplpg

too low, and should be increased; andttes second and temperaturé'(x), resulting from the calculation by
approximation Q(Z) = (Qmax+Q(l)) 2 should be the method described above.
applied;

20 f----

if it turns out thap®(L)< p, , it means that the =\

mass flow of gasQ(l) in a first approximation has beenfgws ,
selected too large, however, it should be reducetd aéiii N O A

Q(Z):(O+Q(l)y2 should be taken ashe second "=
approximation. After the selection of the mass flow of .. ‘
the second approximation, the calculation by th o o w w a0 = w = g w o
solution method ofhe taskl is repeated again, and the

new value p(z)(L) at the end of the gas pipeline is *[~ T~ e
determined. o \
The algorithm, described above, where choics*|

Q(j) is determined by dividing the iterations of arg‘%ef" MM U MM N S WA S o
interval in half, converges quickly and allows todf a w j \
value Q; for which the pressurg{L) at the end of the = &
gas pipeline will be very close to the pressupg

presented in the task, i.e. different from it botmore
than in predetermined error value. temperature 7(x) (bottom) along the length
of the underwater section of the pipeline

550 600 650 700 750 800 850 900

MPa

ssure

S0 100 153 209 250 300 380 S50 600 650 700 750 800 850 900

200 Afﬂ £00
Coordinate, km

Figure 2 — The pressure distribution p(x) (top),

4. Example of Numerical Calculation: the

“South Stream” Gas Pipeline The figure shows that the pressure in the pipeline
on the land areaQ< x < 30km) due to frictional forces

As an example, we present the results of the reduced, and then the descent below sea level
calculation of thermal-hydraulic conditions of wook (30<x<60km) from zero to the depth oP00OmM
one of the embodiment of a deep pipeline “Soutfhcreases almost in 1.5 MPa. Such increase is @husu
Stream”, which is designed to ensure the supplyasf for flat gas pipelines, in this case it is duehe profile
to European countries via the Black Sea and thkaBal of pipeline, i.e. caused by the weight force of
(Fig. 1). compressed gas. If the gas density is low, thenrate,

The peculiarity of this pipeline is that aboutthe plain gas pipelines are characterized by eguiati
960 km of pipe is on the bottom of the sea, of Wwhic X,

600 km — at a depth of2000m. In addition, the
pipeline is characterized by high and and ultrahigh
pressure (the pressure at the beginning of thdipges

31.5 MPa, and at the end of the pipelinesiz.5MPa). -6 the geometric difference of pressures is gégé
compared with the difference between the piezometri
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head, so the Bernoulli equation, is written for C ZRT
compressible medium, Ve = | ————— . (11)

2 2 % S 1_p(62)
%l +J~ﬂ)+z - & +J.@+z =J.idx Z\0p);
29 Y pg 29 Y pg . : L
1 2 % Expression (11) is a so-calledliabatic speed of
wherei is the hydraulic gradient, the elevations can bgound in real gas. In a perfect gag =1, so
neglected. However, it is not so in the case. li yo (6Z/6p)-r =0, Cp=G,+R, Cp/CV =y is the
not take into account the change of velocity head a _iobatic index (for methane is= , 18land the

the losses of friction head, then the value shded . . . .
velocity of the sound is determined more simply and

maintained.
i P, e depends only on temperatury, ) .; =/7RT . Let
r9 ' us suppose, for example,G, = 1900kdK),
Since the slope of the gas pipeline in the areéIO =~ 2450 J/(kgK):; R =500 J/(kgK), then

under the waterzx) decreases, the pressurg(x)

increases. It can be seen from the graph of thespre (”Cr)perf [435m/s.

distribution betweerb00< x < 650km of the pipeline. Using the equation of the state= Z(p,T) pRT of
On a relatively horizontalbottom sectionof real gas, the formula (11) can calculate the spefed

60< x<500km, the pressure in the gas pipelingound in a real gas. Table 3 shows the speedsunfiso

monotonically decreases due to the friction for@s.a in the gas,R =500 J/(kgK) at a temperatur@ = 293K

plot of lifting of 500<x<650km, the pressure for different pressures.

decreases _eve.n fE?lSter, as elevau()r) increases. Table 3 — The Dependence of Sound velocity
The distribution of the gas temperatuTéx) has from the Pressure T = 293 K)

the following characteristics:

for the first 150 km, where the pipeline is lowered Per, MPa | 0.1 5.0 10,0 15,0
to the sea surface, the gas due to the strong hgatvcr. M/s 435 384 435 470
exchange with the environment is quenched to |a per» MPa | 20,0 25.0 30,0 35.0
temperature close to the temperature of the watehé ]
bottom of the Black Sea, the water temperaturenduri| __ cr m/s 525 70 630 700

the whole year is around %Q); . _ )

on the flat bottom, the cooling gas becomes less With increase of the pressur@g, at first it
intense because of the heat exchange with tldecreases, passes through a minimum, then at large
environmentKy = 20V/(m?[K), gas continues to cool; Pressures is steadily increasing and may exceed the

on the upstream portion (500-650 km), the ga\éalue of 700 m/s._ o o
temperature decreases sharply to B7@nd becomes Thus, 4 =0 if the gas flow velocity in the pipeline
lower than the temperature of the sea water duaeo "eaches the local speed of sound. Typically, thecity
gravity forces; of the gas in the pipeline is 5-15 m/s, which is

at the last shallow waters plot (650-940 km) th&ignificantly less than the critical velocity, . It can be
gas transported is heated a bit due to the headinege possible only if the pipeline ruptures or dischargé
with the environment, so the temperature at the @nd gas fall into the atmosphere through the so-caltettlle
the plot is= 280K (= +7°C). speeds may reach the local speed of sound. lcatriti

sectionsdp/dx — O, so they develop the discontinuity

5. Condition for the Stationary Solutions pressure, or as they are callsdpcksgenerating shock
Existence waves.

Let us consider the case when the main  Conclusions
determinant4 of the system of equations (9) is equal
to 0, i.ed=ab, —a)h = 0. In this case, the solution 1. Calculation of steady-state operation of the gas
either does not exist, or is not the only one. pipeline with an arbitrary prqfile is r_educed_ tdveiog a
Equating the determinant to zero, we obtain the system of two coupled ordinary differential equasio

equation for determining the critical mass flowerat expli_citly solved for the first derivatives of thumknown
Qg » O the critical velocity,, . We have: functions — pressure and temperature that are depén

on coordinate along the axis of the pipeline. Tigatr
1 RT 0z sides of these equations can be expressed asto@iva
4=C, ﬁ“? Z- p[a_p] + of the compressibility of gas pressure, and tentpeza
PPer T can be explicitly represented by the equation efdfate
RZT{ 97 2 of natural gas (including high and ultra-high press).
+ z +T( j } =0,
p

— Information on the coefficients of heat transferdan
or hydraulic resistance, as well as the external teatpe
where we find the value of the critical velocity: and environmental properties is also required.

2
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Po3paxyHok npodiniB razonpoBofiB 3 BACOKMM ab0 HaABUCOKUM TUCKOM
y cTauioHapHOMY peXuMi

M.B.JIyp'e

Pociticokuii deporcasnuii ynieepcumem nagpmu i easy imeni I.M. I'yokina,
Jlenincokuil npocnexm, 65, Mockea, 119991 Pociiicbka ®edepayis

Po3rismatoTsest ra30mpoBoaH, YMOBH POOOTH SIKMX 3HAYHO BiIpPI3HSIIOTHCS Bl YMOB OIIBIIICTH iCHYIOUHX cucTeM. Bpammcs
O yBarkm Ta3ONpOBOAM 3 BEIHMKOI PI3HMLECI0 Yy BHCOTi, IO MpamioloTh 3a Bucokux (5-15 MIla) i HamBHCOKHX
(mo 25-35MI1a) Tuckis. [Tepmr 3a Bce, pO3TIISAAIOTHCS TINOHHHI Ta30MPOBO/IH, IO AONA0TH BUCOKI niepeBani. HaBemeHno Teopito
1 aJITOPUTM PO3PaxyHKY CTAI[IOHAPHUX PEKIMIB TAKHX T'a30IIPOBOIIB.

KirouoBi cnoBa: eucokuii i nadsucokuti muck, eazonpogio “ Iliedennuti nomix”, ougepenyianvhe pienanms, Koegiyicum
Licoynsa-Tomcona, npogins 2azonpo8oody, pieHAHHA CMAHY, YUCETbHULL A2OPUMM.
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